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I.  Phys.: Condens. MnIIer S (1993) 7587-7606. Printed in the UK 

Size dependence of the carrier ground state of small 
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4-3-5 Ueda, Morioka, lwate 020, Japan 

Received 2 lune 1993 

AbstracL By calculating the urrier density distribution and the effective one-particle potential 
self-consistently, we investigate the size dependence of the carrier p u n d  swte of small spherical 
semiconductor particles with the doping level fixed. The particles are assumed to be in an 
insulating medium or in the vacuum. The prominent peak just inside the carrier-deficient 
surface layer in the carrier density profile persists regardless of the particle size, while, with 
increasing size, the oscillato*lry density-profile feature inside lhe prominent peak becomes less 
and less conspicuous and reduces to nearly consmt density IO achieve charge neutrality The 
remarkable variation of the potential bending with increase of the size depends upon where the 
newly occupied carrier stales have their probability density concenlrated. This variation of the 
potentid bending often involves the energy intersection of two close energy levels with different 
mgular momenta 1. 

1. Introduction 

Small particles of metals and semiconductors exhibit interesting physical properties inherent 
in small systems, such as the surface effect and the quantum size effect. Examining the size 
dependence of electronic properties of small particles is helpful to understand how electronic 
properties evolve from atomic-like to bulk-like features with increasing size. As for small 
metal particles, ground-state properties [ I N ]  and static [3,5,6] or dynamic [3,6-991 response 
properties of confined conduction electrons were theoretically investigated on the basis of 
the spherical jellium-background model (SJBM) combined with the density-functional theory 
[I-5,7,9], the random-phase approximation (RPA) [6] or the RPA sum-rule approach [8]. The 
sJBM gives a good description of metal clusters with high lattice symmetry, and allows us to 
perform the self-consistent calculation up to large sizes which go beyond the applicability 
of more sophisticated first-principles calculations. In relation to ground-state properties, 
the above theoretical analysis clearly shows the stability of metal clusters at shell-closing 
electron numbers [4] and the electronic shell effect on the size dependence of the ionization 
potential [1,2,4]. These results support the experimental observations [IO, 111. On the 
other hand, it seems that theoretical studies of carrier states of semiconductor particles have 
not been so advanced as those of electronic states of metal particles, although there is a 
hydrodynamic approach to coupling of surface carrier plasmons with surface polar phonons 
in spherical semiconductor particles [12]. On the experimental side, coupled modes of 
carrier plasmons and polar phonons in semiconductor particles were observed by Raman 
scattering [I31 and infrared absorption 113,141. 

Our letter [15] has already highlighted characteristics of the carrier ground state of small 
semiconductor particles and emphasized the difference from the conduction-electron ground 
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state of metal particles. We consider the carrier ground state of small doped-semiconductor 
particles that lie in an insulating medium or in the vacuum. The first characteristic point 
is the boundary condition for carriers at the surface of the semiconductor particle. The 
kinetic energy of each carrier (tens of meV or less) is much smaller than the barrier 
potential at the interface with the insulating medium or the work function (several eV). 
Therefore, the characteristic length of the carrier density profile near the surface (tens of 
A or longer) is much longer than the genetration length of carriers into the surrounding 
medium or the vacuum (one or a few A). The second point is the effect of the dielectric 
polarization of the particle background which accommodates carriers. The polarization of 
this dielectric background reduces the Coulomb interaction between carriers. In addition, 
wben a carrier approaches the particle surface, it is affected by the image potential that 
arises from the difference between the dielectric constant of the particle background and 
that of the surrounding medium or the vacuum. 

The aim of the present work is to investigate the size dependence of the carrier ground 
state of small semiconductor particles with the doping level fixed. We calculate the carrier 
density distribution and the effective one-particle potential self-consistently by means of the 
standard density-functional theory involving the local-density approximation (LDA) [16]. 
As in our letter [15], our objects of calculation are spherical n-type GaAs particles in  
an insulating medium or in the vacuum. Each particle is composed of the carriers and the 
spherical background that is dielectric and electrically positive. The dielectric polarization of 
the background can be described by the static dielectric constant EO.  The ionized donors are 
assumed to be smeared out into a homogeneous positive charge distribution, as the positive 
ions in a metal cluster are treated in the same fashion in the SJBM. Taking account of the 
above-mentioned boundary condition for carriers, we assume that the carriers are confined in 
the particle by an infinite barrier potential at the surface of the particle, namely, that envelope 
wave functions of carriers vanish at the surface. The same assumption for the boundary 
condition was made in order to explore carrier states at the tlat semiconductor surface [ 171 
or at the flat oxide-semiconductor interface [IS]. In n-doped compound semiconductors, 
such as n-GaAs, n-InSb and n-InAs, carriers easily become degenerate with increase of the 
doping level, because an extremely small effective mass and a large dielectric constant give 
a large effective Bohr radius a;, which leads to a small effective carrier density parameter 
r,. Our calculations deal with such highly degenerate carriers. 

The image potential depends upon the static dielectric constant E, which characterizes 
the surrounding medium, We evaluate the effect of the image potential by comparing the 
result for E,,, = 1 with that for E, = EO (no image potential). 

To estimate the geometric effect due to curvature of the sphere, we also calculate the 
carrier ground state of an n-doped GaAs film with the same doping level by virtue of the 
same calculational scheme which involves the effect of the image potential. 

The greater part of the present work is devoted to electrically neutral particles where 
the number of carriers is balanced with that of ionized donors. However, the particle may 
exchange carriers with its surroundings and may be ionized as a whole. To gain some 
insight into this situation, we compare the carrier state of a neutral particle with that of a 
donor-superfluous or donor-deficient particle with the same number of carriers in the same 
configuration. 

2. Theory 

In this section, we represent the theoretical framework for the present analysis. A brief 
explanation has already been given in our letter [151. As is stated in the previous section, 
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we consider spherical doped-semiconductor particles in an insulating medium or in the 
vacuum that have highly degenerate carriers restrained in the particle by an infinite barrier 
potential at the particle surface. 

We employ the standard density-functional formalism which involves the LDA. The 
ground state of carriers can be obtained by solving the following equations self-consistently: 

(1) {-(h2/2m*)A + Ve&;n(~) l )+i ( (~)  = E ~ $ I ( T )  

where m*, N ,  n( r ) ,  +((T), and E, denote the effective mass of carrier electrons, the 
number of carriers, the carrier number density at position T, and the Kohn-Sham [16] 
single-particle eigenfunctions and eigenenergies, respectively. The effective one-particle 
potential Vee consists of the electrostatic Hartree potential V,, the image potential vi,, and 
the exchange-correlation potential Vxc. These potential components are expressed as 

and 

Vxc[n(r)j  = - ( e * / ~ 0 u i ) ( 2 / ~ ) ( $ ~ ) ~ ’ ~ ( l / r ~ ( r )  + 0.05451n[I + ll .4/rs(~)l}. (5) 

In equations (3H.5). R ,  EO, E,, and n+ signify the radius of the spherical particle, the 
static dielectric constant of the particle background, the static dielectric constant of the 
surrounding medium, and the uniformly spread-out density of ionized donors, respectively. 
We adopt the spherical polar coordinates and locate the origin at the cenfre of the particle. 
The effective Bohr radius ai and the local effective density parameter rs(T)  are defined by 

a: = Eofi2/m’e2 

and 

airs (r )  = [ 3 / 4 a n ( ~ ) l ~ ’ ~  

respectively. For the exchange-correlation potential, we invoke the expression paramehized 
by Gunnarsson and Lundqvist [ 191. 

Equation (4) can be converted into the form 

In[l - (r/R)*] 1 t o  - h e * (  ( r / W 2  EO vim(?) = 
~ E O  EO + E ,  R 1 - ( r /R)Z EO + E, 
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It is an excellent approximation to take only the first few terms in the summation of 
equation (6). We retain the first two terms (k = 1 and 2) and neglect higher-order terms in 
the following calculations. 

When 
the effective potential Vee is spherically symmetric, the angular part of each energy 
eigenfunction is described by a spherical harmonic U,,(O,q), and the radial part can be 
obtained from the differential equation 

(-[(hz/2m')/r21(d/dr)(r2d/dr) f l ( l +  l)ft2/2m*r2 + V d r ;  n(r)])&(r) = Er&(r). (7) 

There is a series of energy levels for each value of 1 (l = 0,1,2, . . .), which we label as 
n = 1,2,3, . . . in order of increasing energy. Each energy eigenstate is specified by n, 1 ,  and 
m, namely, the radial, the orbital-angular-momentum, and the magnetic quantum numbers. 
Because of the spherical symmetry, energy eigenstates are degenerate with respect to m, and 
each energy eigenvalue is assigned only by n and 1. If the 2(U + 1)-fold degenerate states 
including spin for each occupied energy level are all occupied (closed-shell configuration), 
we have the spherical carrier density distribution, which leads to the spherical potential V,n. 
The carrier density n(r) can be constructed by 

Our calculations are concerned with the spherically symmetric system. 

where &(r) denotes the radial part of the eigenfunction qolm(~), and the primed summation 
is performed over the occupied energy eigenstates (n, 1 ,  m) or levels (n, 1 ) .  If the degenerate 
states for the highest occupied level are not all filled (open-shell configuration), the carrier 
density distribution given by equation (2) and the resulting potential V e ~  are not spherically 
symmewic. To retain the spherical symmetry, however, we employ the manipulation of 
replacing I+,,~,(r)l~ in equation (8) by its average over m, that is, 

This manipulation creates the spherical carrier density distribution by averaging over all the 
multiplets, and it enables the self-consistent calculation within the spherical symmetry for 
open-shell configurations also. This averaging scheme to preserve the spherical symmetry 
was used in the LDA calculation of electronic states of small metal particles on the basis of 
the SlBM [14] .  

To solve equation (7), it is convenient to expand kr(r) in a series of normalized spherical 
Bessel functions i: 

where i(alkr/R) is expressed as 

i(aIkr/R) = 2 W j i  h r / R ) / j i + i  (ark) (1 1) 

in t ee s  of spherical Bessel functions j / ( x ) ,  cz/e (k = 1,2,3,. , .) is the kth zero of jt(x), 
and j1 is normalized as 
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Equation (IO) satisfies the boundary condition that &r) should vanish at r = R. With the 
expansion (lo), equation (7) is transformed into the matrix eigenvalue problem 

where Pkr is defined by 

For numerical calculations, we truncate the infinite series (10) and retain a finite number 
of terms up to an appropriate order. We take 3 M 0  terms in the following calculations. To 
gain the self-consistent solution, we employ the standard iteration scheme that starts with a 
trial potential of Vew and is repeated until self-consistency is achieved. 

3. Results and discussion 

We explore the size dependence of the carrier ground state by varying the radius of the 
particle and the number of carriers with the doping level fixed. Figure 1 exhibits the carrier 
density profile n(r )  and the effective potential V a ( r )  for various sizes of electrically neutral 
n-type GaAs particles with closed-shell configurations. The fixed doping level corresponds 
to the bulk carrier concentration ab = 5 x IO” ~ m - ~ ,  that is, to the effective carrier density 
parameter r, = 0.7671. The parameter values used in our calculations are the effective 
electron mass ratio m * / m e  = 0.067 and the static dielectric constant EO = 12.9. The static 
dielectric constant of the surrounding medium is taken to be E,,, = 1 except for some cases 
where the image potential is switched off by setting E,,, = EO. 

The carrier density distribution for each size is shown by the full curve in the upper 
panels of figure 1. The horizontal broken line in each upper panel denotes the density of 
the homogeneously spread-out ionized donors. The length is scaled by the effective Bohr 
radius a; = &$iZ/m’eZ = 101.9 A. In figure l ( a )  and (b), the dotted curves labelled 
with (a,  1 )  represent the decomposition of n(r )  into components of various (n, I )  shells. In 
figure I ( c w ) ,  the dotted curves with only 1 assigned display the resolution of a(r)  into I 
components, and some of these curves result from more than one shell. The doued curves 
labelled ‘SW’ in figure I(b), (f), and (h) show the density distribution of the carriers confined 
in a square-well potential V ( r )  = 0 for r c R and V ( r )  = 03 for r > R. The dotted curves 
labelled ‘no 6,’ in figure l(u), (d), and (g) exhibit the carrier density distribution obtained 
from the self-consistent calculation in the absence of the image potential. The dotted curve 
labelled ‘no Vxc’ in figure I(e) represents the carrier density distribution obtained from the 
self-consistent calculation taking no account of the exchange-correlation potential. The 
dotted curve labelled ‘film’ in the upper panel of figure 10’) indicates the carrier density 
distribution in the film whose thickness is equal to the diameter of the particle. Here the z 
axis is faken to be normal to the surface, and its origin is located right in the middle of the 
film. Aside from the geometric difference, we employ the same calculational scheme in this 
film calculation as in the present calculation for small particles [ZO]. This film calculation 
includes the effect of the image potential. 

The effective potential and the occupied energy levels for each size are displayed by the 
full curve and the horizontal full bars, respectively, in each lower panel of figure I(a)- 
0’). The energy of V a  is measured from its value at r = 0 and scaled in units of 
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Ry* = e2/2&& = 5.478 meV. An energy level of higher 1 is displayed as a longer bar. 
Each energy level of 1 consists of 2(2l t 1)-fold degenerate states, which are all occupied 
because each carrier system in this figure has a closed-shell configuration. In figure l(a), 
(d) and (g), the dotted curves and bars represent the effective potential and the occupied 
energy levels in the absence of the image potential. In figure l ( c )  and ( i ) ,  the effective 
potential is decomposed into three components VI,, V,, and !&,. In figure l(e), the. dotted 
curve and bars show the effective potential and the occupied energy levels in the absence 
of the exchangexorrelation potentia!. The 2d and lh energy levels almost overlap each 
other. In figure IG),  the dotted curve and bars exhibit the effective potential, the subband 
bottoms, and the Fermi energy for the film. Because of the reflection symmetry, the surface- 
normal part of the eigenfunction for each subband becomes even or odd with respect to the 
reflection operation z + -z, as specified by the plus or minus sign. Note that the origin 
of the z axis is placed in the middle of the film. 

The quantum numbers n and l are related to the features in the probability density profile 
of the corresponding shell. As is shown typically in the upper panel of figure 1(6), only s 
shells ( I  = 0) make a finite contribution to the carrier density at the centre, and the number 
n - 1 is equal to the node number of the radial wave function in the range 0 e r < R.  
The Ip, Id, If, and Ig components of the carrier density vanish only at the surface and 
the centre, and have no nodes in the intermediate range 0 e r e R. The component of 
higher I among these four is more localized near the surface. The 2s and 2p components 
have one node in the range 0 e r < R, which leads to the two-peak structure in the profile. 
The peak at or near the centre is much larger than the other. Some 1-component curves in 
figure l(c)+) involve more than one shell. However, in the light of the above-mentioned 
profile features of (n. I )  shells, we can roughly decompose each of these 1-component curves 
into contributions of a few constituent shells. 

First, we pay attention to the carrier density distribution (see the full curve in each 
upper panel of figure l(a)+)). The value of the carrier density falls and vanishes at the 
surface, which produces a carrier-deficient surface layer with positive charges. Just inside 
this surface layer appears a prominent peak whose magnitude is considerably larger than 
the homogeneous donor density. 

As is seen from the dotted curves ‘SW’ in figure l (b ) ,  (f), and (h) ,  there is a great 
excess of negative carrier charges inside the carrier-deficient surface layer, when carriers 
are confined in the square-well potential. Of course, this is not a self-consistent solution. 
To reach self-consistency, a considerable fraction of internal excess carriers transfer to the 
surface region, which leads to the prominent peak near the surface. This implies that free 
carriers tend to achieve charge neutrality inside the prominent peak, and that interior excess 
carriers, if any, tend to transfer to the surface region to screen the positive charges in the 
carrier-deficient surface layer. 

The Friedel oscillation in the carrier density profile is more conspicuous at smaller 
sizes. Its form varies significantly as one shell after another is occupied with increasing 
size. The newly occupied shell creates a corresponding new feature in the profile. Once 
a shell is completely filled, its component in the profile declines gradually in magnitude, 
because a fixed number of carriers in the shell extend in the larger region with increasing 
size. The prominent peak just inside the carrier-deficient surface layer is mainly made 
up of the shells with n = 1 and higher 1 whose substantial probability density is well 
localized near the surface. When the carrier number increases from N = 90 to 92 with 
slight increase of the size (see figure l (c )  and (d)), the 3s shell is newly occupied, which 
gives rise to a pronounced peak around the centre. The probability density of the 3s shell 
has an intense peak around the centre, as is shown by figure 3 and its caption in [IS]. When 
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N is raised from 92 to 118 with appreciable increase of the size, the carriers in already 
closed shells spread over the larger region, which results in the rigid downward shift of the 
profile curve in the range r /a i  5 2. The newly occupied li shell, whose probability density 
is concentrated near the suriace, acts to enhance the intensity of the outermost peak in the 
profile. The variation of the oscillatory pattern with increase of the size can be understood 
in the same manner in other ranges of the size also. The Friedel oscillation inside the 
outermost peak becomes less and less conspicuous with increasing size. The converging 
profile is characterized by the prominent peak just inside the carrier-deficient surface layer 
and the almost constant density inside the prominent peak to achieve charge neutrality. In 
figure lG), the result of the film calculation is presented in parallel with that of the particle 
calculation. This indicates that the Friedel oscillation is much less conspicuous in the case 
of the film. This is consistent with the fact that the Friedel oscillation at the flat surface of 
the semi-infinite metal is quite modest compared with that in the small metal particle (see 
figures 3 and 4 in [Z]). 

Here we mention the effect of the image potential expressed by equation (4). In general 
the inequality EO > E, is satisfied because the semiconductor has quite a large dielectric 
constant EO. In this case, the image potential operates to repel the carrier into the inside 
of the particle, when it  approaches the surface. As E ,  increases with EO fixed, the image 
potential acts less effectively, and vanishes when E, becomes equal to EO. We can infer 
the intermediate case 1 c E, c EO from the two typical cases E, = 1 and E, = EO (see 
figure I@),  (d), and (g)). As the image potential reduces its repulsive effect, a small fraction 
of interior carrier charges shift to the surface region, because carriers can get closer to the 
surface. 

For a somewhat quantitative analysis, we introduce the radial dipole which is defined 
by 

Pr = - j d 3 r r [ n t  -n(r)]. 
4HR2 

Figure 2 exhibits the size dependence of the radial dipole obtained from the full self- 
consistent calculation involving the image potential (filled circles), the self-consistent 
calculation in the absence of the image potential (open triangles), and the non-self-consistent 
calculation assuming the square-well potential (open squares). Larger filled circles, all open 
triangles, and larger open squares correspond to closed-shell configurations, while smaller 
filled circles and smaller open squares correspond to open-shell configurations. One or 
some serial open-shell points between two neighbouring closed-shell points are nearly on 
the line Connecting the two closed-shell points. The newly occupied shell is specified at 
each closed-shell point. The two or three shells are indicated at N = 58, 90, 168, and 292 
for the self-consistent calculations (filled circles and open triangles). For instance, the lg  
and 2p shells are filled anew when the size increases from N = 34 to N = 58. We can find 
no correct self-consistent solution for closed-shell configurations in the size ranges where 
the connecting lines are missing. In the range 132 < N < 168, for example, we can acquire 
no well defined solution for either N = 138 (with the 3p shell closed and the Ij shell empty) 
or N = 162 (with the lj shell closed and the 3p shell empty). If we assume that the 3p 
shell is closed and the lj  shell is empty, the self-consistent calculation leads to the incorrect 
solution where the 3p level is higher than the I j  level, and vice versa. This difficulty may 
occur when one of two very close energy levels is occupied and the other is empty. No 
well defined solution can be determined for open-shell configurations in the neighbourhood 
of the insoluble closed-shell configuration either. We encounter the same difficulty in the 
LDA calculation of the conduction-electron ground state of small metal particles [3]. The 
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reason why we are confronted with this difficulty more often in the present calculation is 
that, as is mentioned below, the energy-level crossing often happens because the potential 
bending varies significantly with change of the size. This difficulty might be attributed to 
the LDA. 

1 '  I I I ]  
36 
0 .. 0.3 

I ,  I I 
0 100 200 300 

N 
Flyre 2. "he size dependence of the radial dipole obtzined from the full self-consistent 
calculation involving the image potential (filled circles), the selfconsistent calculation taking no 
account of the image potential (open triangles), and the non-selfconsistent calculation assuming 
the square-well potential (open squaes). 

Except for some filled circles in the smaller size range, the lower and upper broken 
curves in figure 2 smooth the oscillatory variation and give a rough description of the size 
dependence of Pr plotted by filled circles and open squares, respectively. The upper broken 
curve is obtained from the one-step carrier density distribution 

[ R / ( R  - t ) ] 'n+ for r e R - r 
I O  f o r r r R - r  

n ( r )  = 

with t / a ;  = 0.43. This density distribution is the simplest model to allow for the existence 
of the carrier-deficient surface layer and the surplus o f  carriers inside the surface layer. 
These two factors are essential to explain the averaged variation of the open squares. On 
the other hand, the lower broken curve is derived from the two-step density distribution 

I n+ for r < R - d  
d(3R2 - 3Rd + d Z )  

n+ for R - d  < r < R - t (17) I (d - r)[3R2 - 3(r + d ) R  + ( tZ  + rd + dz)l  
n ( r )  = 

l o  for T > R - r 
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Fiyre 3. The size dependence of the magnitude of the downward potential bending in the 
presence of the image potential (filled circles) and in the absence of the image potential (open 
triangles), in comparison with the size dependence of the mdid dipole involving the effeet of 
the image potentid (open s q u w ) .  

with t in ;  = 0.4 and dfa; = 1.521. The smoothed size dependence of the lower broken 
curve results from the existence of the carrier-deficient surface layer and the prominent peak 
in the profile and from charge neutrality inside the prominent peak. 

The oscillatory variation of the radial dipole P, reflects the sequential occupation from 
one shell to another with increasing size. The minimal turning point corresponds to the 
size where a shell of n = 1 and higher 1 becomes closed, while the maximal turning point 
corresponds to the size where a shell of n > 2 becomes closed. The upward or downward 
trend in the saw-tooth pattern of P, depends upon where the shell getting filled has its 
substantial probability density. Here we pay attention to the result of the self-consistent 
calculations (see filled circles and open triangles). For example, as is stated above, the 
probability density of the 3s shell is quite well localized around the centre. In the upper 
panel of figure l(h), the 2g shell constitutes the major part of the peak around ria; N 2.3 in 
the g-component profile curve. The probability density of the 2g shell is concentrated well 
inside the particle. The radial dipole tends to increase when we are filling a shell that has 
its substantial probability density around the centre or well inside the particle. In contrast, 
the probability density of the li or I k  shell is well localized near the surface, as is shown 
by the i-component profile curve at N = 118 or the k-component profile curve at N = 220. 
The radial dipole tends to decrease when we are filling a shell whose probability density is 
concentrated near the surface. 

In figure 2 we compare the size dependence of P, in the presence of the image potential 
(filled circles) with that in the absence of the image potential (open triangles). As is 
mentioned above, if the image potential i s  switched off, a small fraction of internal carrier 
charges transfer to the surface region. This charge transfer is responsible for the downward 
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rigid shift of the saw-tooth pattern of Pr. 
Here we turn our attention to the effective oneparticle potential and the occupied energy 

levels (see the full curve and the full bars in each lower panel of figure l(a)-(j)), The 
radial dependence of the effective potential is characterized by the downward bending and 
the steep ascent in the close vicinity of the surface. Figure 3 displays the size dependence 
of the potential bending V b  in the presence of the image potential (filled circles) and in 
the absence of the image potential (open triangles), in parallel with the size dependence of 
the radial dipole P, involving the effect of the image potential (open squares). The plot 
of open squares is the same as that of filled circles in figure 2. The potential bending V, 
is defined as the absolute value of the minimum of the effective potential Veb. Note that 
the value of Vefi is measured from its value at r = 0. The values of V, and P, are scaled 
on the left and right ordinates, respectively. As in figure 2, larger filled circles, all open 
triangles, and larger open squares correspond to closed-shell configurations, while smaller 
filled circles and smaller open squares correspond to open-shell configurations. The newly 
occupied shell or shells are specified at each closed-shell point. 

The potential bending varies remarkably with changing size. This variation involves 
a significant change of the relative energy-level position of the shells that have different 
probability density distributions. For example, when the size becomes larger from N = 92 
to N = 118 with a great decrease of the potential bending, the energy-level crossing happens 
for two pairs of energy levels, namely, the If and lg levels become higher than the 2s and 
2p levels, respectively. When the size becomes still larger from N = 118 to N = 132 
with an appreciable increase of the potential bending, the energy-level intersection occurs 
for the same two pairs of energy levels, that is, the If and lg  levels become lower than 
the 2s and 2p levels, respectively. The downward bending of Vert forms a potential hollow 
near the surface. With increase (decrease) of the potential bending, the potential hollow 
becomes deeper (shallower), which lowers (heightens) the energy levels of the shells whose 
probability density is concentrated near the surface, particularly in the potential hollow. 

Decomposition of the effective potential in figure l(c) and ( i )  shows that the 
downward potential bending originates from the downward electrostatic Hartree potential 
V, constructed from the charge density distribution due to negative carriers and positive 
donors (see equation (3)), and that the image potential Vi, acts against the downward Hartree 
potential to suppress the downward potential bending and to make the effective potential 
quickly ascend in the close vicinity of the surface. The oscillatory profile of the canier 
density reveals itself in the exchange-correlation potential as a small oscillatory variation. 

Absence of the image potential enhances the downward potential bending and deepens 
the potential hollow, as is shown in figure l(a). (d) ,  and (s). This enhancement of the 
downward bending lowers especially the energy levels of the shells that have their substantial 
probability density near the surface. This energy shift is more pronounced at smaller sizes. 
As in figure 3, switching off the image potential produces an upward rigid shift of the 
saw-tooth pattern of the potential bending (compare the series of full circles with that of 
open triangles). 

Figure l ( e )  implies that, apart from some deviation, the Hartree scheme involving the 
image potential gives a good description of our carrier system, and that the exchange- 
correlation effect merely plays an auxiliary role, because our carrier system has a high 
effective density. Switching on the exchangHorrelation potential gives rise to a slight 
enhancement of the peak near the surface and that around the centre in the carrier 
density profile, because the exchange-correlation potential becomes lower at higher carrier 
concentration. 

Figure 3 shows that the size dependence of the potential bending bears a striking 
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resemblance to that of the radial dipole. The saw-tooth pattern of the potential bending also 
reflects the serial occupation from one shell to another with increasing size. We examine 
how each shell contributes to the downward potential bending through its characteristic 
probability density distribution. The downward bending of the effective potential originates 
from the downward electrostatic Hartree potential. Figure 4 exhibits the Hartree potential 
V, (full curve) and iu decomposition into constituent shell components (dotted curves) for 
N = 58.  Each dotted (n, 1 )  curve represents the electrostatic potential which is generated 
by the charge density distribution n(r; nl) - n+(nl), where n(r ;  nl )  and nc(nl) denote, 
respectively, the (n, 1 )  component of the carrier density and the constant component of the 
uniform donor density which cancels with n(r ;  nl )  as a whole. This charge neutrality as a 
whole requires the derivative of each dotted curve to vanish at the surface. Each potential 
curve is measured from its value at the centre. Ii comparing figure 4 with the upper panel 
of figure I@),  we can understand how the character of the probability density distribution of 
each (n, I )  component is correlated with that in  its corresponding potential curve. As is seen 
from inspection of the 2s or 2p shell, the downward potential is created by the probability 
density which is localized around the centre or well inside the particle. This downward 
potential acts to enhance the downward bending of Vefr. As is obvious from inspection of 
the If or Ig shell, the upward trend is dominant in the potential curve produced by the 
probability density that is concentrated near the surface. This upward trend operates to 
suppress the downward bending of Vef. Thus it is established that the value of vb increases 
when we are filling a shell whose substantial probability density is localized around the 
centre or well inside the particle, and that the value of vb decreases when we are occupying 
a shell whose substantial probability density is concentrated near the surface. 

I ,__...... . ..__ 2t N = 5 8  ’ __.‘ 2 

0 

z 

-5 

0 1 2 
we’ 

Figure 4. Decomposition of the electrostatic Hartree potential VH (full curve) into the constituent 
shell componcnts (dotted CUN~S) for N = 58. 

In the case of the semi-infinite geometry, the downward potential bending at the flat 
neutral surface for the same cmie r  concentration is estimated to be - 3.8 in units of 
Ry* = e2/2&oag by means of a parametric Hartree calculation taking no account of the 
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image potential (see figure 5 in [17]). As evaluated from figures 3 and ](e), the effects of 
the image potential and the exchangecorrelation potential would reduce the above value of 
the downward bending to a smaller reasonable value which is compatible with the variation 
of the filled circles in figure 3. 

So far we have been concerned with electrically neutral particles. Here we examine 
how the carrier ground state varies when the number of carriers is not balanced with that of 
ionized donors. This examination may be helpful to understand the case where our particle 
system can exchange carriers with its surroundings or its surface states. In the same manner 
as in figure I ,  figure 5 displays the carrier ground state for N = 118 and No = 98 ( U )  

and that for N = 118 and N D  = 133 (b), where N and No denote the number of carriers 
and that of donors, respectively. The dotted curve and line in each upper panel of figure 5 
represent, respectively, the carrier density profile and the homogeneous donor density for 
the neutral particle. The dotted curve and bars in each lower panel of figure 5 indicate, 
respectively, the effective potential and the occupied energy levels for the neutral particle. 
Each of the occupied energy levels for the neutral particle is assigned just outside the right 
ordinate. The result for the neutral particle is the same as in figure I(e),  These donor- 
deficient and donor-superfluous particles have the same carrier configuration as the neutral 
particle. When the donor density level shifts down with decrease of N D  (see figure 5(u)), 
internal excess carriers transfer to the surface region to try to achieve charge neutrality 
inside the prominent peak in the carrier density profile and to screen the positive charges 
in the carrier-deficient surface layer. Deepening of the potential hollow near the surface 
makes the I f  and Ig levels lower than the 2s and 2p levels, respectively. On the other hand, 
when the donor density level shifts up with increase of NO (see figure 5(b)).  there occurs 
an opposite carrier transfer from the surface region to the interior, to tend towards charge 
neutrality inside the prominent peak. Owing to shallowing of the potential hollow, the lh 
level becomes higher than the 2d level. 

4. Summary 

We have investigated the size dependence of the carrier ground state of small spherical 
semiconductor particles with the doping level fixed. The particles are assumed to be in an 
insulating medium or in the vacuum and to be electrically neutral as a whole. The results 
are summarized as follows. 

( I )  The cmier density distribution. The most pronounced feature in the carrier density 
profile regardless of the size is the existence of the prominent peak near the surface and the 
carrier-deficient surface layer immediately outside the peak. The Friedel oscillation inside 
the prominent peak is quite outstanding in the smaller size range, and its variation with 
increasing size can be understood by taking account of the probability density distribution 
of the newly occupied shell and the volume extension of carrier states in the already closed 
shells. With increasing size, this Friedel oscillation becomes less and less conspicuous, 
which reduces to the nearly constant density balanced with the uniform donor density. 
Free carriers tend to attain charge neutrality inside the prominent peak, and superfluous 
carriers, if any, tend to transfer to the surface region to screen the positive charges in the 
carrier-deficient surface layer. 

(2) The effective one-particle potential. The magnitude of the downward potential 
bending makes a striking oscillatory variation with increasing size. This variation reflects 
the sequential occupation from one shell to another. The upward or downward trend in this 
variation depends upon whether the newly filled shell has its substantial probability density 
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around the centre (well inside the particle) or near the surface. Owing to the significant 
variation of the potential bending, the energy intersection often happens between two close 
energy levels with different angular momenta 1. 

By varying the number of donors, we have also explored the carrier ground state of 
donor-deficient and donor-superfluous particles which have the same carrier configuration 
as the neutral particle. With changing donor number, a carrier transfer occurs between the 
interior and the surface region to tend towards charge neutrality inside the prominent peak in 
the carrier density profile. Decrease of the donor number enhances the downward potential 
bending significantly, which often entails the energy intersection of two close energy levels 
with different angular momenta 1.  

The present analysis has assumed perfectly spherical particles, which leads to the high 
degeneracy of angular-momentum states. Here we comment upon what happens when the 
particle shape deviates from the perfect sphere. To understand the size dependence of the 
carrier ground state in the present analysis, it is essential to note that each shell has its own 
characteristic probability density distribution. Departure from the complete sphere will give 
rise to shell splitting into subshells or separate levels. This shell splitting may operate to 
smear the shell effects in the size dependence that are quite clear in the case of a perfect 
sphere. However, the essential part of our results will survive, apart from some quantitative 
modification, if these subshells or levels retain the same character in the probability density 
distribution as their original shell. 
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